Fully-discrete finite element numerical scheme with decoupling structure and energy stability for the Cahn–Hilliard phase-field model of two-phase incompressible flow system with variable density and viscosity
نویسندگان
چکیده
We construct a fully-discrete finite element numerical scheme for the Cahn–Hilliard phase-field model of two-phase incompressible flow system with variable density and viscosity. The is linear, decoupled, unconditionally energy stable. Its key idea to combine penalty method Navier–Stokes equations Strang operator splitting method, introduce several nonlocal variables their ordinary differential process coupled nonlinear terms. highly efficient it only needs solve series completely independent linear elliptic at each time step, in which equation pressure Poisson have constant coefficients. rigorously prove unconditional stability solvability carry out numerous accuracy/stability examples various benchmark simulations 2D 3D, including Rayleigh–Taylor instability rising/coalescence dynamics bubbles demonstrate effectiveness scheme, numerically.
منابع مشابه
Decoupled Energy Stable Schemes for a Phase-Field Model of Two-Phase Incompressible Flows with Variable Density
We consider in this paper numerical approximations of two-phase incompressible flows with different densities and viscosities. We present a variational derivation for a thermodynamically consistent phase-field model that admits an energy law. Two decoupled time discretization schemes for the coupled nonlinear phase-field model are constructed and shown to be energy stable. Numerical experiments...
متن کاملsynthesis of platinum nanostructures in two phase system
چکیده پلاتین، فلزی نجیب، پایدار و گران قیمت با خاصیت کاتالیزوری زیاد است که کاربرد های صنعتی فراوانی دارد. کمپلکس های پلاتین(ii) به عنوان دارو های ضد سرطان شناخته شدند و در شیمی درمانی بیماران سرطانی کاربرد دارند. خاصیت کاتالیزوری و عملکرد گزینشی پلاتین مستقیماً به اندازه و- شکل ماده ی پلاتینی بستگی دارد. بعضی از نانو ذرات فلزی در سطح مشترک مایع- مایع سنتز شده اند، اما نانو ساختار های پلاتین ب...
Energy law preserving C0 finite element schemes for phase field models in two-phase flow computations
We use the idea in [33] to develop the energy law preserving method and compute the diffusive interface (phase-field) models of Allen-Cahn and Cahn-Hilliard type, respectively, governing the motion of two-phase incompressible flows. We discretize these two models using a C0 finite element in space and a modified midpoint scheme in time. To increase the stability in the pressure variable we trea...
متن کاملMini-symposium A1
We will present some recent work on phase-field models for twophase fluids with variable densities. The Quasi-Incompressible Navier-Stokes-Cahn-Hilliard model with the gravitational force being incorporated in the thermodynamically consistent framework will be investigated. Under a minor reformulation of the system we show that there is a continuous energy law underlying the system. For the ref...
متن کاملA Phase-Field Model and Its Numerical Approximation for Two-Phase Incompressible Flows with Different Densities and Viscosities
Modeling and numerical approximation of two-phase incompressible flows with different densities and viscosities are considered. A physically consistent phase-field model that admits an energy law is proposed, and several energy stable, efficient, and accurate time discretization schemes for the coupled nonlinear phase-field model are constructed and analyzed. Ample numerical experiments are car...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Modelling and Numerical Analysis
سال: 2021
ISSN: ['0764-583X', '1290-3841']
DOI: https://doi.org/10.1051/m2an/2021056